Spin-flip
Transition
สสารระหว่างดาวที่เป็นแก๊สเย็นไม่แผ่รังสีออกมาที่ความยาวคลื่นที่ตามองเห็น
แต่อย่างไรก็ตามในปี 1944 นักดาราศาสตร์ชาวฮอลแลนด์ ได้ทำนายว่าไฮโดรเจนที่เป็นกลางสามารถตรวจจับการทรานซิชั่นประเภทนี้ได้
รู้จักกันในนาม spin-flip transition ที่ความยาวคลื่นวิทยุ ผลการทดลองถูกยืนยันอีกครั้งในปี
1951 เพราะว่าในสมัยอดีตอุปกรณ์ในสมัยนั้นยังไม่มีความไวต่อสัญญาณเพียงพอ
นักดาราศาสตร์วิทยุพบว่า spin-flip transition มีประโยชน์ในการทำแผนที่โครงสร้างดาราจักร
ไปจนกระทั่งถึงการสร้างภาพจากการกำทอนแม่เหล็ก
เพื่อทำความเข้าใจว่ามันทำงานอย่างไรในงานดาราศาสตร์
เพื่อให้ง่ายที่สุดให้จินตนาการว่า โปรตอนและอิเล็กตรอนในอะตอมไฮโดรเจนเป็นลูกทรงกลมมีประจุหมุนรอบแกนของมันเอง
อะตอมของไฮโดรเจนอยู่ในสถานะพลังงานต่ำสุดซึ่งมีโปรตอนและอิเล็กตรอนหมุนในทิศทางตรงกันข้าม
(anti-parallel) อย่างไรก็ตาม มันอาจเป็นไปได้ว่ามีอะตอมตัวอื่นมาชนกับอิเล็กตรอน
สำหรับอะตอมของไฮโดรเจนแล้วต้องการเพียงพลังงานเล็กน้อยก็ทำให้สปินของอิเล็กตรอนเปลี่ยนทิศทางได้
(นั่นคืออาจจะ Parallel หรือ anti-parallel ได้)
อิเล็กตรอนเมื่ออยู่ในสถานะถูกกระตุ้นจะสปินในทิศทางเดียวกันกับโปรตอน
(ดังรูปซ้ายมือ) เมื่อเวลาผ่านไป (ประมาณ 10 ล้านปี) อิเล็กตรอนจะพลิกกลับมาเพื่ออยู่ที่ระดับชั้นพลังงานต่ำสุด
ขณะเดียวกันก็จะปลดปล่อยพลังงานออกมา ที่ความยาวคลื่นเท่ากับ 21 ซม. หรือ 1420 MHz (รูปขวามือ)
เมื่อสปินมีทิศทางเดียวกัน
ไฮโดรเจนอะตอมจะอยู่ในชั้นสถานะถูกกระตุ้นหรือ excited state และถ้าทิ้งไว้เป็นระยะเวลายาวนาน
(ประมาณหลายล้านปี) อิเล็กตรอนไม่เสถียรจึงต้องพลิกกลับไปยังสถานะพลังงานชั้นต่ำสุด
พลังงานที่ปลดปล่อยออกมาคือโฟตอนมีค่าเท่ากับพลังงานที่แตกต่างกันระหว่างการสปิน ของอิเล็กตรอนและโปรตอน
ซึ่งนำไปสู่การปลดปล่อยรังสีที่ความยาวคลื่น 21 ซม. แต่อย่างไรก็ตามโอกาสในการตรวจจับแก๊สไฮโดรเจนเย็นด้วยกลไกแบบนี้ค่อนข้างเกิดขึ้นได้ยากมาก
เพราะการชนกันแล้วทำให้สปินของอิเล็กตรอนกับโปรตอนอยู่ในทิศทางขนานกันเลยทีเดียวค่อนข้างเป็นไปได้น้อยในสภาพแวดล้อมของสสารระหว่างดาวที่มีความหนาแน่นค่อนข้างต่ำ
เราอาจต้องรอไปหลาย ๆ ปีจนกระทั่งอิเล็กตรอนสามารถพลิกสปินกลับมายังชั้นพลังงานที่ต่ำกว่า
ซึ่งฟังแล้วเหตุการณ์เหล่านี้เป็นไปได้ยากมาก แต่อย่างไรก็ตามในสสารระหว่างดาว มีไฮโดรเจนที่เป็นกลางอยู่จำนวนมหาศาลเพราะฉะนั้นโอกาสที่จะพบไฮโดรเจนที่อยู่ในสถานะถูกกระตุ้นก็มีความเป็นได้
การทรานซิชั่นประเภทนี้สามารถบอกถึงการกระจายของไฮโดรเจนที่เป็นกลางในเอกภพของเราได้
สำหรับในบริเวณที่มีกลุ่มหมอกโมเลกุลไฮโดรเจน (หรือกลุ่มหมอกโมเลกุล)
นักดาราศาสตร์จะต้องใช้เครื่องมืออื่นในการศึกษา โดยส่วนใหญ่แล้วจะใช้โมเลกุล CO
ที่ซึ่งปลดปล่อยรังสีที่ความยาวคลื่น 2.6 mm
เป็นตัวศึกษา
ข้อความเหล่าเรียบเรียงจากเว็บไซต์ http://astronomy.swin.edu.au/cosmos/S/Spin-flip+Transition
สืบค้นเมื่อวันที่ 23 กันยายน 2556