Monday, September 23, 2013

Spin-flip Transition (21 cm - 1420 MHz of HI neutral hydrogen)

Spin-flip Transition

สสารระหว่างดาวที่เป็นแก๊สเย็นไม่แผ่รังสีออกมาที่ความยาวคลื่นที่ตามองเห็น แต่อย่างไรก็ตามในปี 1944 นักดาราศาสตร์ชาวฮอลแลนด์ ได้ทำนายว่าไฮโดรเจนที่เป็นกลางสามารถตรวจจับการทรานซิชั่นประเภทนี้ได้ รู้จักกันในนาม spin-flip transition ที่ความยาวคลื่นวิทยุ  ผลการทดลองถูกยืนยันอีกครั้งในปี 1951 เพราะว่าในสมัยอดีตอุปกรณ์ในสมัยนั้นยังไม่มีความไวต่อสัญญาณเพียงพอ นักดาราศาสตร์วิทยุพบว่า spin-flip transition มีประโยชน์ในการทำแผนที่โครงสร้างดาราจักร ไปจนกระทั่งถึงการสร้างภาพจากการกำทอนแม่เหล็ก
เพื่อทำความเข้าใจว่ามันทำงานอย่างไรในงานดาราศาสตร์ เพื่อให้ง่ายที่สุดให้จินตนาการว่า โปรตอนและอิเล็กตรอนในอะตอมไฮโดรเจนเป็นลูกทรงกลมมีประจุหมุนรอบแกนของมันเอง อะตอมของไฮโดรเจนอยู่ในสถานะพลังงานต่ำสุดซึ่งมีโปรตอนและอิเล็กตรอนหมุนในทิศทางตรงกันข้าม (anti-parallel) อย่างไรก็ตาม มันอาจเป็นไปได้ว่ามีอะตอมตัวอื่นมาชนกับอิเล็กตรอน สำหรับอะตอมของไฮโดรเจนแล้วต้องการเพียงพลังงานเล็กน้อยก็ทำให้สปินของอิเล็กตรอนเปลี่ยนทิศทางได้ (นั่นคืออาจจะ Parallel หรือ anti-parallel ได้)

อิเล็กตรอนเมื่ออยู่ในสถานะถูกกระตุ้นจะสปินในทิศทางเดียวกันกับโปรตอน (ดังรูปซ้ายมือ) เมื่อเวลาผ่านไป (ประมาณ 10 ล้านปี) อิเล็กตรอนจะพลิกกลับมาเพื่ออยู่ที่ระดับชั้นพลังงานต่ำสุด ขณะเดียวกันก็จะปลดปล่อยพลังงานออกมา ที่ความยาวคลื่นเท่ากับ 21 ซม. หรือ 1420 MHz (รูปขวามือ)
เมื่อสปินมีทิศทางเดียวกัน ไฮโดรเจนอะตอมจะอยู่ในชั้นสถานะถูกกระตุ้นหรือ excited state และถ้าทิ้งไว้เป็นระยะเวลายาวนาน (ประมาณหลายล้านปี) อิเล็กตรอนไม่เสถียรจึงต้องพลิกกลับไปยังสถานะพลังงานชั้นต่ำสุด พลังงานที่ปลดปล่อยออกมาคือโฟตอนมีค่าเท่ากับพลังงานที่แตกต่างกันระหว่างการสปิน ของอิเล็กตรอนและโปรตอน ซึ่งนำไปสู่การปลดปล่อยรังสีที่ความยาวคลื่น 21 ซม. แต่อย่างไรก็ตามโอกาสในการตรวจจับแก๊สไฮโดรเจนเย็นด้วยกลไกแบบนี้ค่อนข้างเกิดขึ้นได้ยากมาก เพราะการชนกันแล้วทำให้สปินของอิเล็กตรอนกับโปรตอนอยู่ในทิศทางขนานกันเลยทีเดียวค่อนข้างเป็นไปได้น้อยในสภาพแวดล้อมของสสารระหว่างดาวที่มีความหนาแน่นค่อนข้างต่ำ เราอาจต้องรอไปหลาย ๆ ปีจนกระทั่งอิเล็กตรอนสามารถพลิกสปินกลับมายังชั้นพลังงานที่ต่ำกว่า ซึ่งฟังแล้วเหตุการณ์เหล่านี้เป็นไปได้ยากมาก แต่อย่างไรก็ตามในสสารระหว่างดาว มีไฮโดรเจนที่เป็นกลางอยู่จำนวนมหาศาลเพราะฉะนั้นโอกาสที่จะพบไฮโดรเจนที่อยู่ในสถานะถูกกระตุ้นก็มีความเป็นได้ การทรานซิชั่นประเภทนี้สามารถบอกถึงการกระจายของไฮโดรเจนที่เป็นกลางในเอกภพของเราได้ สำหรับในบริเวณที่มีกลุ่มหมอกโมเลกุลไฮโดรเจน (หรือกลุ่มหมอกโมเลกุล) นักดาราศาสตร์จะต้องใช้เครื่องมืออื่นในการศึกษา โดยส่วนใหญ่แล้วจะใช้โมเลกุล CO ที่ซึ่งปลดปล่อยรังสีที่ความยาวคลื่น 2.6 mm เป็นตัวศึกษา

ข้อความเหล่าเรียบเรียงจากเว็บไซต์ http://astronomy.swin.edu.au/cosmos/S/Spin-flip+Transition สืบค้นเมื่อวันที่ 23 กันยายน 2556

No comments:

Post a Comment